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Abstract

A parameter-free geometric model for nuclear ab-
sorption is derived herein from microscopic theory.
The expression for the absorption cross section in
the eikonal approximation, taken in integral form, is
separated into a geometric contribution that is de-
scribed by an energy-dependent e�ective radius and
two surface terms that cancel in an asymptotic series
expansion. For collisions of light nuclei, an expression
for the e�ective radius is derived from harmonic os-
cillator nuclear density functions. A direct extension
to heavy nuclei with Woods-Saxon densities is made
by identifying the equivalent half-density radius for
the harmonic oscillator functions. Coulomb correc-
tions are incorporated, and a simpli�ed geometric
form of the Bradt-Peters type is obtained. Results
spanning the energy range from 1 MeV/nucleon to
1 GeV/nucleon are presented. Good agreement with
experimental results is obtained.

Introduction

The nuclear absorption cross section is a mea-
sure of the sum of all the reaction processes induced
during nuclear collisions. This metric is applied
widely in such diverse �elds as fundamental nu-
clear physics, the study of radiation e�ects on living
cells, and radiation-shielding design for future space-
exploration vehicles (ref. 1).

In recent years, considerable advancements in
both the theory (refs. 2{19) and experimental meth-
ods (refs. 20{26) of this fundamental observable have
been made. Most signi�cantly, the energy varia-
tions of the absorption cross sections for all nuclei in
the intermediate-energy range from 10 MeV/nucleon
to 1 GeV/nucleon are qualitatively similar and
can be related to the underlying two-nucleon inter-
actions. At energies above 1 GeV/nucleon, the ab-
sorption cross section is essentially constant and ap-
proximately equals the total geometric cross-sectional
area of the projectile-target system; this consistency
allows an extension of the geometric model and its
parameterized forms (refs. 13{17, 25, and 26) to the
entire intermediate- and low-energy range. The geo-
metric formula provides a quick method for the cal-
culation of the absorption cross section and is highly
desirable for inclusion in radiation-shielding trans-
port codes.

Microscopic formulations are based on the quan-
tum collision theory of many-body composite sys-
tems. The solution of this complex problem can be
approached with the methods of Glauber (ref. 2),
Watson (ref. 3), Feshbach (ref. 3), and the KMT ap-
proach (ref. 4). Wilson (ref. 5) extended the Watson

formalism of nucleon-nucleus collisions to nucleus-
nucleus collisions, from which the cross sections in
the eikonal approximation can be obtained. These
solutions, which are generally solved by numerical
methods (refs. 5 and 6), are given in integral form.

Closed-form solutions for the microscopic theory
have been obtained for the simplest case of Gaussian
nuclear density distribution (refs. 7 and 8). The
solution applicability to the more realistic density
distribution of the Woods-Saxon form is based on
matching equivalent Gaussian forms to the surface
densities of heavier nuclei. This approach is suc-
cessful because the energy dependence for the trans-
parency is largely a function of the low-density sur-
face region with a saturated, absorptive inner core
that remains essentially energy independent.

The purpose of this paper is to derive a geomet-
ric formula, valid for both light and heavy nuclei, for
the nuclear absorption cross section from the micro-
scopic formulation. This e�ort will be accomplished
by separating the integral expression for the absorp-
tion cross section in the eikonal approximation into
an e�ective geometric radius and two surface com-
ponents that approximately cancel in the asymptotic
expansion.

The concept of the e�ective radius in microscopic
formulations is not new (refs. 8 and 9). However, in
all previous works the contributions beyond a cuto�
radius are negligible, whether the e�ective radius
is de�ned at half-absorption density (ref. 8) or at
a distance of one mean free path from the surface
(ref. 9). In this work, however, the e�ective radius at
half-absorption density has a precise de�nition such
that the transparency within this radius cancels the
absorptive contribution from the outer region.

A summary of the format for this paper is pre-
sented. In \Theory," the results from the micro-
scopic theory are reviewed and developed into a geo-
metric formalism. In \Application to Light Nuclei,"
a method is illustrated for harmonic oscillator mat-
ter densities that are applicable to light nuclei. Ex-
pressions for the eikonal phase shift and the total
absorption cross section are derived for the nucleon-
nucleus as well as for the nucleus-nucleus inter-
actions. An exact formula for the e�ective radius
at half absorption is derived, and its �rst approxima-
tion is used to evaluate explicitly the geometric term
and the surface contributions. Results comparing ex-
periments for energy values from 50 MeV/nucleon
to 1 GeV/nucleon are presented. Also, a simpli-
�ed version of the expression for the e�ective radius,
which is used in the rest of the sections, is given.
In \Extension to Woods-Saxon Densities," a direct



extension of the expression mentioned above is made
for the heavier nuclei described byWoods-Saxon den-
sity distributions. In \Coulomb Interactions," the
e�ects of Coulomb de
ections are incorporated, and
results for light- and heavy-ion projectile-target sys-
tems spanning the energy range from 1 MeV/nucleon
to 1 GeV/nucleon are presented. In \Bradt-Peters
Form," the expressions are further simpli�ed and the
results compared with those of the previous section.
In \Nuclear-Medium E�ects," comments are made
on nuclear-medium e�ects. \Concluding Remarks"
summarizes the suggestions for improvement submit-
ted herein.

Theory

Microscopic Theory

The nuclear absorption cross section in the eikonal
approximation is given by

�abs = 2�

Z
1

0

f1� exp[�2Im �(b; e)]gb db (1)

where Im denotes the imaginary part of the complex
phase shift �(b; e), which is a function of the impact
parameter b and energy e, and can be derived from
a multiple-scattering series expansion for the optical
potential (refs. 5 and 6). Within the Watson form
of impulse approximation, when the propagator G is
replaced by the free propagator Go (ref. 5), the phase
shift is given by

�(b; e) =
A2

PA
2

T

k(AP + AT)

Z
dz

Z
d3��T(�)

�

Z
d3y�

P
(b+ z + y + �)t(e;y) (2)

where k is the wave number of the projectile, AP
and AT are the mass numbers, and �P and �T are
the projectile and matter densities ; t(e;y) signi�es
the two-body transition amplitude for free nucleons
as follows:

t(e;y) = �
� e

m

�1=2
��(e) [�(e) + i] [2� B(e)]�3=2

� exp

"
�

y2

2B(e)

#
(3)

Here, e is the two-nucleon kinetic energy in the
center-of-mass (cm) frame of reference, m is the
nucleon rest mass, ��(e) is the isospin-averaged total
nucleon-nucleon cross section, B(e) is the averaged
slope parameter, and �(e) is the averaged ratio of

the real to imaginary components of the forward-
scattering amplitudes.

Geometric Model

A geometric formula for the absorption cross sec-
tion of high-energy nuclear collisions is given by the
Bradt-Peters form (ref. 2),

�abs= � (RP + RT � �o)
2 (4)

where RP and RT are the radii of the projectile and
target nuclei and �o is a constant. If �o is small com-
pared with the radii, the formula shown above implies
an annular region of transparency for peripheral colli-
sions. To show that this form may indeed be derived
from microscopic theory, the integral given in equa-
tion (1) is separated at an impact parameter Re as
follows:

�abs= 2�

Z Re

0

f1� exp [�2Im�(b; e)]g b db

+ 2�

Z
1

Re

f1� exp [�2Im�(b; e)]g b db

= �R2
e � �1 + �2 (5)

such that �1 and �2 are the small surface contribu-
tions given by

�1 = 2�

Z Re

o
exp [�2Im�(b; e)] b db (6)

and

�2 = 2�

Z
1

Re

f1� exp [�2Im�(b; e)]g b db (7)

Appendix A includes the asymptotic series
expansions,

�1 � 2�Re
exp[��1(Re; e)]

@�1(b; e)=@bjRe
(8)

and

�2 � 2�Re
f1� exp [��1(Re; e)]g

2

@�1(b; e)=@bjRe
exp[�1(Re; e)]

(9)

where
�
1(b; e) = 2Im�(b; e) (10)

Note that �2 can also be expanded into a conver-
gent Taylor series, provided that �

1
(b; e) < 1 beyond
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Re and that, in the �rst approximation, �2 is given
by

�2 �

Z
1

Re

�
1
(b; e)b db (11)

From equations (8) and (9),

�2 � �1 = 2�Re�(Re; e) (12)

where

�(Re; e) =
exp[�1(Re; e)]

@�1(b; e)=@bjRe

f1� 2 exp[��1(Re; e)]g

(13)
Hence,

�abs = �R2

e � 2�Re�(Re; e)

� �[Re � �(Re; e)]
2

(14)

If the integration limit Re is the sum of the pro jec-
tile and target radii, the required geometric formula
shown in equation (4) is obtained. However, for con-
venience, Re can be chosen such that � is identically
zero. When this condition is valid, equation (13)
shows

exp[��1(Re; e)] = 0:5

or
�
1(Re; e) = ln 2 (15)

That is, Re is chosen at half transparency or, equiv-
alently, at half absorption. (See �g. 1.) The trans-
parency function T is

T = exp[��1(b; e)] (16)

and the absorption function A = 1� T . With � � 0,

�abs= �R2

e (17)

where the e�ective radius Re is now a function of
energy. This equation gives the desired geometric
formula for the nuclear absorption; Re is derived
from equation (15). However, a more appropriate
formula for Re can be derived in terms of the classical
geometric radius Rg, which is de�ned as Re!1.
Note that at the high-energy limit, as e ! 1, the
wavelength of the projectile nucleons is su�ciently
small compared with the nuclear dimensions, and the
e�ective radius assumes the classical geometric radius
Rg, given by

Rg = ro

�
A
1=3
P + A

1=3
T

�
(18)

where ro is a variable determined by the condition

�
1(Rg;1) = ln 2 (19)

such that � = 0 is satis�ed. The e�ective radius Re

at an arbitrary energy e can then be related to the
geometric radius Rg by equating

�
1
(Re; e) = �

1
(Rg;1) = ln 2 (20)

This relation is useful only if an algebraic expres-
sion for �(b; e) is known. For Gaussian and harmonic
oscillator density functions, �(b; e) is readily obtained
by the methods in \Application to Light Nuclei."

Application to Light Nuclei

In this section, the phase-shift function �(b; e) is
derived from the harmonic oscillator density func-
tion, which is applicable to light nuclei for A � 16:
Also, an exact expression for the e�ective radius is
obtained. The nucleon-nucleus and nucleus-nucleus
collisions are treated separately.

For the nucleon-nucleus collision, the nucleon
density is simply

�(x� x0) = �(x� x0) (21)

because the nucleon wave function has been e�ec-
tively incorporated into the two-body transition am-
plitude t(e; y), and the nucleus charge density is
given by

�c(x) = �
o

 
1 + 


x2

a2

!
exp

 
�
x2

a2

!
(22)

where 
 and a fm (1 fermi = 1 � 10�15 m) are
constants taken from reference 27. The expression for
�(b; e) is derived in appendix B and has the following
form for the nucleon-nucleus system:

�
1(b; e) = f1(e)

�
a1 + a2b

2

�
exp[�P (e)b2] (23a)

and for the nucleus-nucleus system:

�
1(b; e) = f1(e)

�
a1+ a2b

2+ a3b
4

�
exp[�P (e)b2]

(23b)

where explicit expressions for the functions f1(e) and
P (e) and for the constants a1, a2, and a3 in each case
are given in appendix B.

Figure 2 displays the absorption function

A = 1� exp[��1(b; e)] (24)

as a function of the impact parameter b, for 4He{4He
and 16O{16O systems, at an energy of 2 GeV/nucleon,
which is taken as the geometric limit. The position of
the e�ective radius Re that is de�ned at T = A = 0:5
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is also indicated. Note that even within the geometric
limit, considerable transparency for peripheral colli-
sions occurs.

The e�ective radius Re for three di�erent energy
values is shown in �gure 3, where the absorption
is plotted at 50 MeV/nucleon, 250 MeV/nucleon,
and 1 GeV/nucleon for the 16O{16O system. As
shown in the �gure, Re passes through a minimum
and then increases as the energy decreases. The
strong absorption radius Rs is reached in the low-
energy limit. The underlying basis for this energy
dependence can be traced to the nucleon-nucleon
total cross section, which exhibits a similar trend. An
expression for the e�ective radius Re in terms of its
geometric value Rg is obtained from equations (23)
and the condition

�
1(Re; e) = �

1(Rg;1)

For nucleus-nucleus collisions,

R2

e =
P (1)

P (e)
R2

g +
1

P (e)

(
ln

�
f1(e)

f1(1)

�

+ ln

 
a1 + a2R

2
e + a3R

4
e

a1 + a2R
2
g + a3R

4
g

!)
(25)

with a similar expression for the nucleon-nucleus case
for a3 = 0. In the equation above, the geometric
value Rg is given by

Rg = rTA
1=3
T (26a)

for the nucleon-nucleus system and

Rg = rTA
1=3
T + rPA

1=3
P (26b)

for the nucleus-nucleus system. The value r is deter-
mined from the condition

�(Rg; 2A GeV) = ln 2

which, for the nucleus-nucleus system, is given by

ln f
1
(2A GeV) + ln

�
a1+ a2R

2

g + a3R
4

g

�
� P (2A GeV)R2

g = ln(ln 2) (27)

Substituting for Rg from equation (26), equa-
tion (27) is solved iteratively with an initial value
of ro = 1:0 fm. For the nucleus-nucleus system, iden-
tical target-projectile systems are considered with
rT = rP = ro. The resulting values for ro are plotted

Table I. Collision Values for ro

ro, fm

Atomic mass

number Nucleon-nucleus Nucleus-nucleus

2 0.50 0.47

4 1.02 0.85

7 1.14 1.13

9 1.19 1.17

10 1.19 1.16

11 1.18 1.14

12 1.19 1.13

14 1.20 1.16

16 1.23 1.21

>16 1.25 1.25

in �gure 4 and listed in table I. From equation (20),
this determination is clearly su�cient to ensure that
the condition � = 0 is also satis�ed by the value of
the e�ective radius given by equation (25).

For the heavier nuclei within the harmonic oscil-
lator category, ro � 1:2 fm; this length approximates
the generally accepted value that determines the nu-
clear radius. Clearly, the values of ro for the lightest
nuclei such as deuterium and helium are considerably
smaller than those for the heavier nuclei; this di�er-
ence can be explained by examining the convolution
integral for the phase shift. In the case of Gaussian
density distributions, the resultant width increases

by the factor
�
a2P + a2T

�
1=2

, whereas the total geo-

metric width is given by the sum aP + aT , as shown
in equation (26), where aP and aT are the widths
of the target and projectile, respectively. Hence, for
the lightest nuclei, which have near-Gaussian distri-
butions, ro must be lowered to account for this dis-
crepancy. The convolution widths for the Woods-
Saxon forms, however, are expected to be close to
the geometric value.

The advantage of writing Re in terms of Rg, as
given in equation (25), is that in the �rst approxima-
tion the second logarithmic term may be neglected
when Re � Rg, with the result

R2

e �
P (2A GeV)

P (e)
R2

g+
1

P (e)
ln

�
f1(e)

f1(2A GeV)

�
(28)

Although this approximation o�sets the condition
� = 0, the integration limit in equation (5) is su�-
ciently de�ned to evaluate �1 and �2 explicitly; the
absorption cross section is given accurately by

�abs = �R2

e � �1(Re; e) + �2(Re; e) (29)
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Figures 5{9 display the absorption cross section
using equation (29) for light-ion projectile-target sys-
tems that agree well with experimental data. These
results are also in close agreement with the numerical
evaluation of the integral given by equation (1). (See
refs. 5 and 6.)

Hereafter, the expression for Re from equa-
tion (28) will be used with the assumption that
(�2 � �1) is negligible. In equation (28), the expres-
sion P (e) for the nucleon-nucleus collision is equiva-
lent to equation (B10),

P (e) =

�
a2T �

2

3
r2p + 2B(e)

�
�1

(30a)

and P (e) for nucleus-nucleus collision is equivalent to
equation (B17),

P (e) =

�
a2T + a2P �

4

3
r2p + 2B(e)

�
�1

(30b)

where rp = 0:86 fm is the radius of the proton.
Because the slope parameter B(e) is approximately
a constant equal to 0.4 fm2 within the energy range
considered, P (2A GeV) � P (e); equation (28), with
Rg given by equation (26), then simpli�es to

R2

e =
�
rTA

1=3
T

�2
+
�
a2T + 0:35

�
g(e) (31a)

for the nucleon-nucleus collision, and

R2

e =
�
rPA

1=3
P + rTA

1=3
T

�2
+
�
a2T + a2P

�
g(e) (31b)

for the nucleus-nucleus collision, where

g(e) = ln

�
f1(e)

f1 (2A GeV)

�

� ln

�
��(e)

��(2A GeV)

�
(32)

The terms AP and AT are the charge density width
parameters for the harmonic oscillator function given
in reference 27, rP and rT are the respective values
for ro given in table I, and the parameterized form
for ��(e) is given in appendix C.

Extension to Woods-Saxon Densities

The Woods-Saxon density does not yield a simple
expression for the phase shift �(b; e). Therefore, a
simple modi�cation of equations (31) is given. The

two-parameter Woods-Saxon charge density is given
by

�c(r) =
�o

1 + exp
�
r � R

c

�
where R is the radius at half density, c is related
to the nuclear skin thickness t by the expression
c = t=4:4, and �o is a normalization constant. From
reference 27, the parameter c is a constant approx-
imately equal to 0.55 fm for all nuclei. Hence, we
assume that only one parameter R describes the
Woods-Saxon form.

The equivalent half-density distance R for the
harmonic oscillator function satis�es

1

2
=

 
1 + 


R2

a2

!
exp

 
�
R2

a2

!
(33)

which can be rewritten as

k = ln 2 + ln(1 + 
k) (34)

where

k =
R2

a2
(35)

Equation (34) is solved iteratively for k with
an initial value of k = ln 2. The parameter k is
plotted in �gure 10 as a function of atomic mass
number. For the heavier nuclei with the harmonic
oscillator density form, k � 2 or R �

p
2a. Also,

for these nuclei an equally valid description would be
the Woods-Saxon form with the half-density radius
given by R =

p
2a. This equivalence suggests that

the substitution of

a =
R
p
2

into equations (31) can extend its range of applicabil-
ity to the Woods-Saxon densities of heavy ions with
A > 16. This substitution yields for the nucleon-
nucleus system,

R2

e =
�
rTA

1=3
T

�2
+

 
R2

T

2
+ 0:35

!
g(e) (36a)

and for the nucleus-nucleus system,

R2

e =
�
rP A1=3

P
+ rTA

1=3
T

�
2

+
1

2

�
R2

T
+R2

P

�
g(e)

(36b)

where RP and RT are the half-density values for the
Woods-Saxon forms given in reference 27.
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Coulomb Interactions

The derivation of the eikonal approximation as-
sumes straight-line trajectories for the projectile and
an impact parameter at the collision site that is
equal to its asymptotic value. For heavy ions at
low energy, the Coulomb force de
ects the straight-
line trajectories signi�cantly, thereby decreasing the
cross-sectional area of incident particles that actually
undergo nuclear forces. The eikonal approximation
may still be used (refs. 8, 10, and 18) if the e�ective
impact parameter at the collision site is the distance
of closest approach d (refs. 8 and 18), where b and d

are related by

b
2 = d

2

�
1�

2a

d

�
(37)

with

a =
ZTZPe

2
o

Ecm

where ZT and ZP are the charges of the target and
projectile, respectively, eo is the electron charge, and
Ecm is the total center-of-mass energy.

Hence, the asymptotic impact parameter be, cor-
responding to the radial distance Re, is given by

b
2
e = R

2
e

�
1�

2a

Re

�
(38)

where be now de�nes the integration limit for equa-
tion (5). Therefore, the Coulomb-modi�ed geometric
formula is readily obtained as

�abs = �R
2
e

�
1�

2a

Re

�
(39)

In �gures 11{21, the absorption cross section
for several light- and heavy-ion projectile-target nu-
clei is plotted with and without the Coulomb cor-
rections for energy values from 1 MeV/nucleon to
2 GeV/nucleon. The results with Coulomb correc-
tions agree well with experiment. The following val-
ues for ro (see table I) were used for nucleus-nucleus
collisions:

A = 4; ro = 0:56 fm

7 < A < 16; ro = 1:20 fm

A > 16; ro = 1:25 fm

Figures 22{26 show the cross sections for spe-
ci�c projectiles on various targets with and without
Coulomb interaction. The linear relationship with
atomic number is clearly evident. As expected, the

Coulomb corrections are more signi�cant for heavy
ions.

Bradt-Peters Form

In the present formalism, the geometric limit for
the nuclear absorption cross section is given by

�abs= �r
2
o

�
A
1=3
P + A

1=3
T

�2
compared with the Bradt-Peters form at high energy,

�abs= �r
2
o

�
A
1=3
P +A

1=3
T � �o

�2
The di�erence comes from the choice of ro. Here,

ro satis�es the geometric criteria that are valid at
high energies and small wavelengths such that

Rg = ro

�
A
1=3
P + A

1=3
T

�
(T = 0:5; e!1)

An equally valid description is to de�ne the strong
absorption radius Rs at low energy as the reference
value such that

Rs = rs

�
A
1=3
P + A

1=3
T

�
(T = 0:5; e! 0)

The strong absorption parameter rs is greater
than ro because the absorptive content of the surface
region increases at lower energies due to s-wave scat-
tering. This low-energy description results in �o 6= 0
at high energy, a state that conforms to the Bradt-
Peters formula.

However, since the eikonal approximation is valid
only at high energies, the low-energy description
cannot be implemented. Also, the corrections that
show the Coulomb and Pauli correlation, signi�cant
contributors at low energies, were not incorporated
into the phase-shift function. Hence, the choice of
the geometric limit as the reference point is justi�ed.

The more general equations (36) for the e�ective
radius Re at intermediate energy will now be cast in
the Bradt-Peters form. The simplest form is obtained
for heavy ions when rT = rP = ro. Using the
parameterized form for half-density charge radius R,
given by

R = c1A
1=3� c2

with
c1 = 1:18

c2 = 0:48

)
(40)
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in equations (36) and simplifying, the Bradt-Peters
form is obtained for the nucleon-nucleus system

R2

e = r2(e)
h
A
1=3
T � �o(e)

i2
(41a)

where

r2(e) = r2o +
c2
1
g(e)

2

�o(e) �
g(e)

2r2(e)
c1c2

and for the nucleus-nucleus system as

R2

e = r2(e)
h
A
1=3
P + A

1=3
T � �o(AP ; AT ; e)

i2
(41b)

with r as shown before and

�o(AP ; AT ; e) �
g(e)

2r2(e)

0
@c1c2+ c21

A
1=3
T A

1=3
P

A
1=3
T +A

1=3
P

1
A

where ro = 1:25 fm.

In deriving the formula above, �o is assumed to be

much smaller than A
1=3
P and A

1=3
T . Note that r is now

energy dependent, which supports the observation
made by Kox et al. (ref. 25).

After the above equation is substituted into equa-
tion (39) to account for Coulomb correction, the re-
sults are compared with those of the previous section
in �gures 27{30. The agreement is good for the heav-
ier as well as for the proton projectiles. The discrep-
ancy for the alpha projectiles in the nucleus-nucleus
case results from the assumption rP = rT = 1:25 fm
for all nuclei in the Bradt-Peters form.

Nuclear-Medium E�ects

In the microscopic formulation, the two-nucleon
interaction is de�ned between free nucleons. This
de�nition excludes nuclear-medium e�ects from
Fermi motion and Pauli blocking. The exclusion
of these e�ects can be justi�ed in both the high-
and low-energy (below 20A MeV) regimes but not

in the intermediate-energy region. At high energy,
many scattering states are available; hence, the ef-
fects of the occupied states are comparatively negli-
gible. At low energy, peripheral collisions dominate
when the nuclear overlap densities are low and when
the number of occupied states is small. Peripheral
collisions dominate at low energies for the following
reasons: the nuclear absorptive power increases due
to s-wave scattering between nucleons, and Coulomb
forces de
ect the trajectories into the peripheral re-
gions. Thus, reasonably good results are obtained
with the Coulomb corrections alone. The nuclear-
medium e�ects should actually increase the mean
free paths (ref. 19); hence, more nuclear transparency
results. For uncharged projectiles such as the neu-
tron, these e�ects can be considerable, as shown in
�gure 14(b).

Concluding Remarks

A parameter-free geometric model for nuclear ab-
sorption was derived herein from microscopic theory.
The expression for the absorption cross section in the
eikonal approximation, taken in integral form, was
separated into a geometric contribution that was de-
scribed by an energy-dependent e�ective radius and
two surface terms that cancelled in an asymptotic
series expansion.

For collisions of light nuclei, an expression for the
e�ective radius was derived from harmonic oscilla-
tor nuclear density functions. A direct extension to
heavy nuclei with Woods-Saxon densities was made
by identifying the equivalent half-density radius for
the harmonic oscillator functions. Coulomb correc-
tions were incorporated, and a simpli�ed geometric
form of the Bradt-Peters type was obtained. Re-
sults spanning the energy range from 1 MeV/nucleon
to 1 GeV/nucleon were presented. Good agreement
with experimental results was obtained.

NASA Langley Research Center

Hampton, VA 23681-0001

April 23, 1993
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Appendix A

Surface Contributions to Total Absorption Cross Section

The surface contributions to the total absorption cross section, given by �1 and �2, are evaluated using the

Laplace method for asymptotic series (ref. 27)

�1 = 2�

Z
Re

o

exp[��
1(b; e)]b db

= 2�

Z
Re

o

exp

�
�

�
�
1(Re; e) +

@�1(b; e)

@b
(b�Re) + : : :

��
b db

� 2�Re

exp[��
1(Re; e)]

@�1(b; e)=@b
��
Re

(A1)

Similarly,

�2 = 2�

Z
1

Re

f1� exp[��
1(b; e)]gb db

= 2�

Z
1

Re

exp
�
ln f1� exp[��

1(b; e)]g
�
b db

= 2�

Z
1

Re

exp

�
lnf1� exp[��

1(Re; e)]g+
@

@b
(lnf1� exp[��

1(b; e)]g) (b�Re) + : : :

�
b db

� 2�Re

f1� exp[��
1(Re; e)]g

2

exp[�1(Re; e)][@�1(b; e)=@b]
��
Re

(A2)
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Appendix B

Derivation for Phase Shift �(b;e)

Expressions for the phase shift �(b; e) are derived from the harmonic oscillator density functions. The

charge density is

�c(x) = �o

 
1 + 


x2

a2

!
exp

 
�

x2

a2

!
(B1)

where 
 and a fm are taken from reference 27 and �
o
is a normalization factor.

The matter density is derived from the charge density (ref. 29) as

�m(x) = �o(a
0 + b0x2) exp(�px2) (B2)

where

a0 =
a3

8s3

 
1 +

3

2

 �

3

8


a2

s2

!
(B3)

b0 = 

a5

128s7
(B4)

s2 =
a2

4
�

r2p

6

p =
1

4s2

where rp = 0:86 fm is the radius of the proton. Nucleon-nucleus and nucleus-nucleus collisions are considered

separately.

Nucleon-Nucleus

The matter density function for the nucleon is given by

�
P
(x� x0) = �(x� x0) (B5)

and for the target nucleus by

�T(x) = �TO(a
0

T + b0Tx
2) exp(�px2) (B6)

The phase shift is given by equation (2),

�(b; e) =
A2

P A2

T

k(AP +AT )

Z
dz

Z
d3��T(�)

Z
d3y�P(b+ z + y+ �)t(e;y)

Substituting for �P , �T , and t(e;y) from equation (3), the integral is easily performed, obtaining

�
1(b; e) = 2Im�(b; e) = f1(e)f2(b; e) (B7)

where

f1(e) = AT�TO��(e)

�
�

P (e)

�
1=2 �

2B(e)(p+ p0)
�
�3=2

(B8)

f2(b; e) = (a1+ a2b
2) exp[�P (e)b2] (B9)
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with

a1 = a0 + 1:5
b0

p+ p0
+

a2

2P (e)

a2 =
p

0
2

(p+ p0)2
b0

p0 =
1

2B(e)

p =
1

4s2T

P (e) =
1

4s2T + 2B(e)
(B10)

Also an expression for �2 in the Taylor expansion is derived as

�2 = 2

�
�

P (e)

�
3=2

f1(e)

�
a1+ 1:5

a2

P (e)
+ a2R

2

e

�
exp

h
�P (e)R2

e

i
(B11)

Nucleus-Nucleus

The matter density function for the projectile is

�P (x) = �PO

�
a0P + b0P x2

�
exp(�px2) (B12)

and for the target is

�T (x) = �TO(a
0

T + b0T x2) exp(�qx2) (B13)

which gives
�
1
(b; e) = f1(e)f2(b; e) (B14)

where

f1(e) = APAT ��(e)�TO�PO
�
2�B(e)[p+ p0(e)][q + q0(e)]

	
�3=2

(B15)

and

f2(b; e) =
�
a1 + a2 b2 + a3 b4

�
exp[�P (e)b2] (B16)

with

p =
1

4s2P

q =
1

4s2T

q0 =
1

2B(e)

p0(e) =
h
4s2T + 2B(e)

i
�1

P (e) =
h
4
�
s2P + s2T

�
+ 2B(e)

i
�1

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(B17)
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a1 = a0Pa
00

T +
1:5

p+ p0

�
a00Tb

0

P + a0P b
0

T

�
+

15

4

b0T b
0

P

(p+ p0)2

a2 = a00T b
0

P

p02

(p+ p0)2
+ a0Pb

0

T

p2

(p+ p0)2
� b0T b

0

P2
pp0

(p+ p0)3
+ b0Tb

0

P

3

2

p2+ p02

(p+ p0)3

a3 = b0Tb
0

P

p2p02

(p+ p0)4

where a0P and b0P are the constants that relate to the projectile as given by equations (B3) and (B4) and

a0T =
a3T

8s3T

" 
1 +

3

2


T
�

3

T
a2T

8s2T

!
+



T
a2T

16s4T

1:5

(q + q0)

#

b0T =
a3T

8s3T



T
a2T

16s4T

"
q

0
2

(q + q0)2

#

a00T = a0T + b0T
1:5

q + q0

relate to the targets.

An expression for �2 in the Taylor series expansion is derived as

�2 �
f1(e)

2P (e)

r
�

P (e)

(
a1+ a2

�
1:5

P (e)
+R2

e

�
+ a3

"
15

4P (e)2
+

3R2
e

P (e)
+ 4R4

e

#)
exp

h
�P (e)R2

e

i
(B18)

The following integral relations were used.

I =

Z
1

�1

exp[�qr2� p(r� y)2] dr =

�
�

q + p

�
3=2

exp

�
�

pq

p+ q

�
y2 (B19)

Z
r2 exp[�qr2 � p(r� y)2] dr = �

@

@q
I (B20)

Z
(r� y)2 exp[�qr2 � p(r� y)2] dr = �

@

@p
I (B21)

Z
r2(r� y)2 exp[�qr2� p(r� y)2] dr =

�
�

@

@p

��
�

@

@q

�
I (B22)

An alternate partial evaluation is given in reference 30.
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Appendix C

Parameterization for Experimental Two-Nucleon Total Cross Section

For completeness, the isospin-averaged nucleon-nucleon cross section taken from reference 1 is given. A

parameterization for the experimental two-nucleon total cross section in millibarns (1 barn = 1� 10�28 m2) is

given for the proton-proton interaction by

�pp(e) =

�
1 +

5

e

�n
40 + 109 cos

�
0:199

p
e
�
exp

h
�0:451(e� 25)0:258

io
(C1)

for e � 25 MeV and for the lower energies by

�pp(e) = exp

�
6:51 exp

�
�
� e

134

�
0:7
��

(C2)

For proton-neutron interaction at e � 0:1 MeV,

�np(e) = 38 + 12 500 exp
h
�1:187(e� 0:1)0:35

i
(C3)

and at lower energies

�np(e) = 26 000 exp

�
�
� e

0:282

�
0:3
�

(C4)

The isospin average is calculated as follows:

��(e) =
�
(NPNT + ZPZT )�pp+ (NPZT + ZPNT )�np

�
=APAT (C5)

where A, N , and Z are the atomic, neutron, and proton numbers, respectively.

The nucleon-nucleon slope parameter is parameterized (ref. 31) as

B(e) = 10 + 0:5 ln

�
s0

so

�
(C6)

where s0 is the square of the nucleon-nucleon center-of-mass energy and so = (1 GeV=c)�2.
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Figure 1. Absorption as a function of impact parameter for nuclear collisions. At half absorption, shaded areas
�1 � �2.
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Figure 2. Absorption as a function of impact parameter for pro jectile-target systems of 4He{4He and 16O{16O
at 2 GeV/nucleon. Terms R1 and R2 denote geometric radii for systems.
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Figure 3. Absorption as a function of impact parameter for three energy values: 50 and 250 MeV/nucleon and
1 GeV/nucleon. Corresponding e�ective radii R1, R2, and R3 are indicated.
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Figure 5. Variation of absorption cross section with energy for proton-nucleus collisions.

.50

.40

.30

.10

0
100 10 000

EL, MeV/nucleon

σ a
bs

, b

p–16O

p–9Be

.20

1 00010

Figure 6. Variation of absorption cross section with energy for proton-nucleus collisions.
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Figure 7. Variation of absorption cross section with energy for deuteron-nucleus collisions.
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Figure 8. Variation of absorption cross section with energy for oxygen-nucleus systems.
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Figure 9. Variation of absorption cross section with energy for carbon-nucleus systems.
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Figure 10. Variation of k = (R=a)2 for harmonic oscillator functions with atomic mass number , where R is
half-density radius and a fm is harmonic oscillator parameter.
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Figure 11. Absorption cross section as a function of energy for proton on carbon with and without Coulomb
e�ects.
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Figure 12. Absorption cross section as a function of energy for proton on aluminum with and without Coulomb
e�ects.
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Figure 13. Absorption cross section as a function of energy for proton on copper with and without Coulomb
e�ects.
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Figure 14. Absorption cross section for proton or neutron on lead as a function of energy with and without
Coulomb e�ects. Without Coulomb e�ects, curve corresponds to neutron projectiles.
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Figure 15. Absorption cross section as a function of energy for carbon on carbon with and without Coulomb
e�ects.
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Figure 16. Absorption cross section as a function of energy for carbon on aluminum with and without Coulomb
e�ects.
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Figure 17. Absorption cross section as a function of energy for oxygen on calcium with and without Coulomb
e�ects.
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Figure 18. Absorption cross section as a function of energy for oxygen on lead with and without Coulomb
e�ects.
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Figure 19. Absorption cross section as a function of energy for oxygen on silicon with and without Coulomb
e�ects.
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Figure 20. Absorption cross section as a function of energy for calcium on calcium with and without Coulomb
e�ects.
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Figure 21. Absorption cross section as a function of energy for argon on bismuth with and without Coulomb
e�ects.
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for protons on targets at 40 MeV/nucleon with

and without Coulomb e�ects, where AT is target mass number.
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Figure 24. Absorption cross section as a function of
�
A
1=3
T + A

1=3
P

�2
for alpha particles on targets at

25 MeV/nucleon with and without Coulomb e�ects, where AP is mass number of alpha particles and
AT is target mass number.
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Figure 25. Absorption cross section as a function of
�
A
1=3
T +A

1=3
P

�2
for carbon on targets at 30 MeV/nucleon

and 300 MeV/nucleon with and without Coulomb e�ects.
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Figure 26. Absorption cross section as a function of
�
A
1=3
T + A

1=3
P

�2
for neon on targets at 30 MeV/nucleon

with and without Coulomb e�ects.
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Figure 27. Comparison of Bradt-Peters form with that for absorption cross section of proton on targets at
60.8 MeV/nucleon.
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Figure 28. Comparison of Bradt-Peters form with that for alpha on targets at 25 MeV/nucleon.
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Figure 29. Comparison of Bradt-Peters form with that for carbon on targets at 30 MeV/nucleon and
300 MeV/nucleon.
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Figure 30. Comparison of Bradt-Peters form with that for neon on targets at 30 MeV/nucleon.
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